
A Hybrid Approach for Constrained
Deep Reinforcement Learning

Scientific thesis for the procurance of the degree B.Sc.
from the Department of Electrical and Computer Engineering at the
Technical University of Munich.

Supervised by Univ.-Prof. Dr.-Ing./Univ. Tokio habil. Martin Buss
M.Sc. Ozgur Oguz
Chair of Automatic Control Engineering

Submitted by cand. ing. Ahmed Magdy Hendawy
Karlsbergstrasse, 25
81475 Munich
015208379970

Submitted on Munich, 27.07.2018

Acknowledgments

Thanks God

For Mom, Dad and my brothers who always believe in me. For my aunt who is
supporting me. For my friends Nasr and Hossam who are pushing me forward.
Finally, For my supervisor who helped me to reach that level and without him I
may not have completed my thesis in this professional form.

Abstract

Recently, deep reinforcement learning techniques have achieved tangible results for
learning high dimensional control tasks. Due to the trial and error interaction be-
tween the autonomous agent and the environment, the learning phase is uncon-
strained and limited to the simulator. Such exploration has an additional drawback
of consuming unnecessary samples at the beginning of the learning process. Model-
based algorithms, on the other hand, handle this issue by learning the dynamics
of the environment. However, model-free algorithms have a higher asymptotic per-
formance than the model-based one. Our contribution is to construct a hybrid
structured algorithm, that makes use of the benefits of both methods, to satisfy
constraint conditions throughout the learning process. We demonstrate the valid-
ity of our approach by learning a reachability task. The results show complete
satisfaction for the constraint condition, represented by a static obstacle, with less
number of samples and higher performance compared to state-of-the-art model-free
algorithms.

2

CONTENTS 3

Contents

1 Introduction 5
1.1 Related Work . 6

2 Methodology 9
2.1 Technical Background . 9

2.1.1 Deep Reinforcement Learning 9
2.1.2 Model-Free Algorithms . 11
2.1.3 Model-Based and Optimal Control 12

2.2 Hybrid Constrained MPC Reinforcement Learning Algorithm 12
2.2.1 Model-Based Deep Reinforcement Learning 13
2.2.2 Imitation process . 17
2.2.3 Hybrid Constrained MPC . 18

3 Results 25
3.1 Environment . 25
3.2 Evaluating the Model-Based Stage 25
3.3 Evaluating Design Decisions for HCMPC 26

3.3.1 Standard Deviation Effect . 26
3.3.2 Boundary Layer Effect . 27
3.3.3 Standard Deviation Vs. Boundary Layer 28
3.3.4 Learning from Failure with Violation Cost 29
3.3.5 TRPO Step Size Effect . 29
3.3.6 Comparison to State-of-the-Art Algorithms 33

4 Conclusion 35
4.1 Future Work . 35

A 37
A.1 Experimental Details for HCMPC . 37
A.2 Model-Based Results on different tasks 37

List of Figures 39

4 CONTENTS

Bibliography 41

5

Chapter 1

Introduction

Over the last few years, deep reinforcement learning approaches demonstrated re-
markable results for learning high dimensional control tasks, starting from learning
how to play Atari games from raw-pixel inputs [MO15, MK16], competing with the
human for playing games like Go [SP16, SB17], participating in the autonomous
driving [SY17], learning locomotion tasks and manipulation skills from raw sensory
inputs [LA6a, SLM+15, SA16, LW15]. Most of these results have been achieved by
using the trial and error interaction between the agent and environment assuming
there are no constraints for the learning process. Safety is one important con-
straint for learning that should be taken into consideration if we want to transfer
the learning from a simulated environment into the real world. Assume that we
have manipulator which tries to learn a task in the workspace. The actions of the
manipulator should be constrained for safety requirements for itself and the workers
and the machines around it. Then we need to satisfy the safety condition within
each step of learning.

Introducing constraints to the reinforcement learning framework is a well-known area
of research which is formulated as constrained Markov Decisions Process (CMDP)
problem [Alt99]. CMDP formulation is working well with finite policies for known
dynamical model which can be solved then by linear programming [LK17]. How-
ever, this is limited to low-dimensional environments and can not scale to high-
dimensional control tasks we target.

From control theory, constrained model-predictive control (CMPC) [MS00] is one
way for performing a task with regards to some constraints. Optimization is done for
sequence of actions that satisfy constraint functions with applying the first action
from this sequence. Dynamical model is used to estimate the next states within
the optimization process. We are inspired by CMPC for achieving the target of
constraining our learning process, but we need a dynamical model for predicting the
next states.

6 CHAPTER 1. INTRODUCTION

Formulating the dynamical model or equations of motions of a complex system is
not trivial for non-linear high dimensional environments. Model-based algorithms
tackle this issue by learning the dynamical model of the environment and optimize for
the actions by using optimal control methods. Such methods show faster learning
process than any other model-free algorithms which have problems with sample
complexity. However, the asymptotic performance of the model-based approaches
can not be compared with the model-free one. This raises an auxiliary problem for
balancing this well-known trade-off.

In this work, we propose a hybrid reinforcement learning algorithm that satisfies
constraint conditions within the learning process. The hybrid structure of our ap-
proach helps to balance the trade-off between model-based and model-free methods.
Strengths of model-based and model-free algorithms are utilized, starting from learn-
ing the dynamical model in a simulator in unconstrained form by using a model-
based method, then using it in a constrained environment to improve the policy
performance by maximizing the expected reward using a model-free algorithm. We
show the validity of our approach by applying it on learning a manipulation task
with collision avoidance constraint for safety.

1.1 Related Work

Constrained reinforcement learning has long been a topic of interest specially with
the consideration of the safety as constraint. A comprehensive overview of safety in
reinforcement learning was given by [GF15].

Safe policy search methods have been proposed in prior work. [UD07] introduce a
policy gradient algorithm that enforces active constraints by using gradient projec-
tion, but this algorithm suffers from not making the policy always safe within the
learning process. [AE15] propose a theoretically-motivated policy gradient method
for lifelong learning with safety constraints, but this method includes an expen-
sive inner loop optimization, in terms of computation complexity, of a semi-definite
program which inapplicable for deep reinforcement learning framework.

Policy search within CMDP framework is well-known approach for satisfying con-
straints for reinforcement learning. [AHTA17] is considered as the state of the art
constrained reinforcement learning approach that both guarantees constraint sat-
isfaction throughout training and works for arbitrary policy classes. However, in
the implementation on continuous control tasks, this method suffers from constraint
violation within the learning process.

Introducing corrective actions, to avoid constraints violation, is a preferred method
in the optimization and control research fields. From control theory, [KH17] achieved
a safe human-robot interaction by using invariance control beside the nominal one

1.1. RELATED WORK 7

to introduce corrective actions to keep the constraints satisfaction. However, using
invariance control in the learning scheme introduces a challenge of linearizing the
input-output equation which means using a linear dynamical model rather than
Gaussian process or neural network. On the other hand, [PT17] propose a practical
method that uses optimization layer to provide corrective actions in the learning
process. This work is based on [AK17] that develop an optimization layer with
neural network. The method achieves zero constraints violation for manipulation
tasks, but it is not clear if the method can perform the same with high dimensional
control tasks as locomotion.

Combining control theory with learning is considered as powerful tool that is used to
satisfy safety guarantees. [KK18] propose a learning-based approach for safe explo-
ration within reinforcement learning framework by using model-predictive control as
a control scheme. This work provides provable high-probability safety guarantees by
constructing a confidence interval for the predicted trajectories, but the method is
applied on a simple inverted pendulum without testing it on high dimensional con-
trol tasks. [FT17] propose a general safety framework based on Hamilton-Jacobi
reachability methods that can work in conjunction with an arbitrary learning algo-
rithm.

Model-free algorithms based on Q-learning, actor-critic methods and policy gradi-
ents have been showed the ability to learn complex skills in high-dimensional state
spaces. However, model-free algorithm suffers from the high sample complexity
problem even [SLM+15], that achieve a monotonic improvement for the learned pol-
icy, can not be compared to the sample efficiency of the model-based algorithms.
On the other hand, model-based algorithms achieve a low asymptotic performance
comparing to the model-free algorithms. This dilemma pushes the idea of combin-
ing the benefits of both algorithms in one method [OS15, HT00]. We make use
of [NKFL17] hybrid structure for balancing the trade-off within our constrained
approach.

We propose a deep reinforcement learning algorithm for constrained learning on
a hybrid form that balances the trade-off of achieving sample efficiency and high
asymptotic performance. We test our algorithm on a manipulation task, for which
zero constraints violation is achieved with fast learning process in terms of number
of samples and high asymptotic performance.

In the next chapter, we focus on the methodology for our algorithm. Then we show
the results for our algorithm on 2DOF planar robotic arm for learning reaching task.
After that, we have a discussion for the results obtained then a conclusion for the
whole work.

8 CHAPTER 1. INTRODUCTION

9

Chapter 2

Methodology

Our approach is a deep reinforcement learning algorithm that can be used to learn a
specific task with constraints introduced within the system. Our algorithm is used
to balance the trade-off of the reinforcement learning between the sample efficiency
of the model-based algorithms and high asymptotic performance of the model-free
algorithms. We are inspired by [NKFL17] to balance this trade-off. For better
understanding of our approach, we need first to introduce some basic knowledge
in Sec. 2.1. Then we will explain the details of our algorithm in Sec. 2.2, with
our contribution to have a learning algorithm that can highly perform within a
constrained system.

2.1 Technical Background

2.1.1 Deep Reinforcement Learning

Reinforcement learning is one of three branches of machine learning beside super-
vised and unsupervised learning. It focuses on goal-directed learning from inter-
action with the environment. The idea of interacting with our environment for
learning is the first concept we think about for the nature of learning. Learning
decision making is the main problem reinforcement learning tries to solve. And this
is by learning how to map situations into actions to maximize a numerical reward
signal. The agent interact with the environment by applying actions that change
the environment state. Then the environment sends the next state with the appro-
priate reward signal back to the agent as shown in Fig. 2.1. Discovering the right
sequence of actions with the most reward by the agent is based on trial and error.
The most delayed rewards are affected by the actions taken at the current time. We
formalize the problem of reinforcement learning using ideas from dynamical systems
theory, specifically, as the optimal control of incompletely-known Markov decision

10 CHAPTER 2. METHODOLOGY

processes. Markov decision process is intended to include the three main aspects of
reinforcement learning - observation, actions and reward. Any method solves this
problem, considered as reinforcement learning method.

Agent Environment

Action

State

Reward

Figure 2.1: Flow chart for reinforcement learning interaction

Reinforcement learning is different from supervised learning. In supervised learning,
a model is trained on a training set of labeled examples provided by knowledgeable
external supervisor. The objective of this type of learning is to have a generalized
model that can act correctly a situation that is unpresented in the training set.
Imitation learning is a supervised learning method tries to solve the decision making
problem which the reinforcement learning tries to solve too. The supervisor or the
expert in some cases is the human. Human labels the appropriate actions for each
situation to construct the training set. Imitation learning is part of our algorithm
that is covered in Sec. 2.2.2 with non-human supervisor.

Reinforcement learning is also different from what is called unsupervised learning.
Unsupervised learning tries to learn hidden structure of unlabeled data. One might
think that reinforcement learning is trying to find the hidden structure in the agent’s
experience which will help in learning. However, the main objective of reinforcement
learning is to maximize the reward signal. We can consider reinforcement learning
as semi-supervised learning.

One of the challenges that rises in reinforcement learning, is the trade-off between
exploration and exploitation. The agent takes actions that maximize the reward
where these actions had been taken before by the agent. But to discover these
actions from the beginning the agent needs to take new actions never taken before.
The agent should balance between exploiting actions, that are taken before to achieve
maximum reward, and exploring the action space for new actions that may lead to
better performance and higher reward. The agent must try a variety of actions and
progressively favor those that appear to be best. On a stochastic task the problem
even worse as each action must be tried many times to gain a reliable estimate of
its expected reward.

The agent experience can be broken up into a series of episodes with a finite number

2.1. TECHNICAL BACKGROUND 11

of states, actions and reward signals. We call that an episodic reinforcement learning
problem. The episode starts by an initial state s0 that is sampled from initial state
distribution ρ0. For each time steps, the agent acts by choosing action at from a
distribution π(at | st). π is called policy, it is the probability distribution from which
the agent uses to sample actions (in case of stochastic policy, but if the policy is
deterministic, the actions are the output directly from a function approximator like
neural network). Then the environment generates the next state and the reward
signal, according to some distribution P (st+1, rt | st, at) which is the transition
probability. The episode ends by terminal state sT where T is the maximum time
steps.

Another famous trade-off in reinforcement learning, is the model-free and model-
based trade-off. Model-free and model-based algorithms are the methods that try
to solve the reinforcement learning problem but with different approaches. There
are pros and cons for each one of these methods. Model-free algorithms treat the
environment as a black box with trial and error until reaching to a high performance.
Due to this trial and error learning based, the interaction time increases which means
the samples or the trail of learns increase. This is known as sample complexity
problem. On the other hand, model-based algorithms are able to solve this problem
by learning the dynamics of the environment then act by optimal control methods
to get a high performance. The model-free algorithms achieve high asymptotic
performance better than that of the model-based. Then the trade-off is to choose
the appropriate algorithm for the appropriate problem. We cover both methods in
the next couple of sections as our approach is based on this trade-off.

2.1.2 Model-Free Algorithms

Many reinforcement learning algorithms consider the environment as unknown,
which makes the interaction between the agent and the environment based on trial
and error. These algorithms are called model-free which assumes no information
about the future after taking some actions. Model-free algorithms prove that this
an effective way to interact with the environment for learning a specific task. These
algorithms depend only the reward value at the end of each episode for the policy
improvement by maximizing the expected total reward,

θ∗ = arg max
θ

Eτ

[∑
t

r(st, at)

]
(2.1)

where θ defines the parameters of the policy we need to optimize and τ is a tra-
jectory which is sequence of states s and actions a. One of the strongest model-
free algorithms is trust region policy optimization TRPO [SLM+15] which achieves
monotonic improvement for complex continuous benchmark tasks.

12 CHAPTER 2. METHODOLOGY

According to the way that model-free algorithms interact with the environment,
there is a drawback for using these algorithms which is the sample complexity prob-
lem. Sample complexity means that the algorithm need a lot of samples to learn a
task which may cause some problems if the simulator is expensive or we train an
agent on a real system which causes power consumption. On the other hand, the
asymptotic performance, which is the performance at the end of the learning phase,
is high.

2.1.3 Model-Based and Optimal Control

There is another way to learn a task which is learning the dynamics of the sys-
tem. This means that we know how the environment will behave and what states
we will end up in after applying some actions. Then we can act optimally by us-
ing optimal control method for planning and choose the appropriate action. These
type of algorithms we call it model-based algorithms. Model-based algorithm is
considered as a very powerful tool for learning the task with prior knowledge. We
need to approximate our dynamical system, which may be linear or non-linear, into
a trainable model. In model-based algorithms, dynamical model can be approxi-
mated either by linear models [LA6a], Gaussian processes (GPs) [DR11] or neural
networks [NKFL17, KCD+18].

Model-based algorithms have sample efficiency that make it attractable to be used to
tackle the problem of huge number of samples consumed by model-free algorithms.
On the other hand, these algorithms could not achieve very high asymptotic per-
formance comparing to the model-free algorithms. These is considered one of the
difficult reinforcement learning trade-off that needed to be balanced to achieve the
desired aim.

2.2 Hybrid Constrained MPC Reinforcement

Learning Algorithm

Our algorithm consists of three main stages which form a sequential learning pipeline
as shown in Fig. 2.2. The first stage is the model-based algorithm at which we achieve
the sample efficiency by learning the dynamics of the system and acting optimally
by using an MPC-like controller. We explain this stage in detail in Sec 2.2.1. In the
second stage, we mimic the behavior of the MPC controller with a policy represented
by a neural network. This is called imitation process which is explained in Sec. 2.2.2.
The last stage is our main contribution at which we use constrained MPC controller
to interact with constrained environment where the actions are sampled from the

2.2. HYBRID CONSTRAINED MPC REINFORCEMENT LEARNING ALGORITHM 13

model-free policy that has been initialized with the parameters of the imitation
policy in the second stage. Our contribution is discussed in detail in Sec. 2.2.3.

We consider an infinite-horizon discounted Markov Decision Process (MDP) char-
acterized by a tuple (S,A, P, r, ρ0, γ), with S the set of states, A the set of actions.
P : S ×A× S → [0, 1] the transition probability distribution to go from one state
to another by taking a specific action, r : S ×A× S → R the function of associ-
ated rewards, ρ0 : S → [0, 1] the initial state probability distribution, γ ∈ [0, 1) a
discount factor, π : S ×A → [0, 1] a stochastic policy.

Model-Based Imitation Process HCMPC
πMPC

f̂θ∗(s, a)

φ∗

f̂θ∗(s, a)

Figure 2.2: Flow chart for hybrid constrained MPC pipeline.

2.2.1 Model-Based Deep Reinforcement Learning

The model-based deep reinforcement learning method is the first stage in our algo-
rithm. The learning process within this stage will be in unconstrained form (using
a physics engine simulator). The method gives us an advantage of having a general
learned dynamical model that we can use later for any other task. On the other
hand, a policy, which performs a specific task, can be extracted from this method.
We explain the dynamical model approximation in detail in Sec. 2.2.1.1, how to
construct initial dataset and preprocessing the data with the help of normalization
vector in Sec. 2.2.1.2, using the dataset to train the dynamical model in Sec. 2.2.1.3,
extracting a policy that performs specific task in Sec. 2.2.1.4, using reinforcement
learning to improve our dynamical model performance in Sec. 2.2.1.5.

2.2.1.1 Dynamical Model Approximation

We approximate our dynamical model by a deep neural network fθ(st, at) which is
parameterized by θ which represents the weights and biases for hidden and output
layers for the neural network. The straightforward way is to make fθ(st, at) accept
as an input the current state st and action at and output the predicted next state
st+1. But the neural network is difficult to learn the difference between the st+1 and
st when they are similar in case the action has a very small effect on the next state.
The problem becomes difficult when the time between the states ∆t is very small.
The solution for this problem is to make fθ(st, at) output the difference between the
next state and current state ∆̂ over time step duration ∆t . Then the estimated

14 CHAPTER 2. METHODOLOGY

next state ŝt+1 is as follows,

ŝt+1 = st + fθ(st, at) (2.2)

This approach will relieve the neural network from memorizing the input state [DR11,
FA16, NKFL17, KCD+18]. Increasing ∆t can help to increase the information for
each time step. On the other hand, it will increase the discretization and the com-
plexity of the underlying continuous-time dynamics, which can make the learning
process more difficult.

2.2.1.2 Collecting and Preprocessing the Training Data

Learning the dynamics of a system needs only the actual transition (st, at, st+1)
which means that to train the dynamical model it does not need transitions com-
ing from optimal or even sub-optimal policy. Random policy πRAND is used by
the agent to collect some actual transitions after interacting with the environ-
ment by taking actions each time step. We record the resulting trajectories τ =
(s0, a0, ..., sT−1, aT−1, sT) for T time steps where the initial configurations are sam-
pled s0 ∼ ρ0.

We slice the resulting trajectories into current state st and action at as data in-
puts and the difference between the consecutive states ∆ (where ∆ = st+1 − st) as
the output labels. We will use the dataset D to extract the normalization vector
which consists of mean µ and standard deviation σ of each of the dataset compo-
nents (st, at,∆). Normalization vector is used to nomalize the inputs for the neural
network and denormalize the output,

∆̂ = µ∆ + σ∆ � fθ(
st − µs
σs + ε

,
at − µa
σa + ε

) (2.3)

where µs, σs, µa, σa, µ∆, σ∆ are normalization vector components, � is an elemen-
twise vector multiply and ε is a small positive value (to prevent divide-by-zero).
Normalization for the data helps in relieving the effect of exploding gradients.

2.2.1.3 Train the dynamical model

We train the dynamical model on dataset D by minimizing the error function,

ε(θ) =
1

|D|
∑

(st,at,∆t)∈D

1

2
‖∆t − fθ(st, at)‖2 (2.4)

where ε(θ) is a mean square error function and fθ(st, at) is the output state difference
∆̂ after denormalization, using stochastic gradient descent. In our case, we use Adam
optimizer [KB14] to solve this supervised learning problem.

2.2. HYBRID CONSTRAINED MPC REINFORCEMENT LEARNING ALGORITHM 15

2.2.1.4 Model-Based Control

In order to learn a specific task optimally with the help of the learned dynamical
model f̂θ(st, at) and cost function c(st, at) which describes the task, we use model-
based controller, that is both computationally tractable and robust to mismatch
in the learned dynamical model, to achieve the desired performance for learning
the task. We optimize the sequence of actions A

(H)
t = (at, ..., at+H−1) over a finite

horizon H, using the learned dynamical model to predict the next states,

A
(H)
t = arg min

A
(H)
t

t+H−1∑
t′=t

c(ŝt′ , at′) (2.5)

where ŝt = st, ŝt′+1 = ŝt′+fθ(st′ , at′) . This method is difficult to be used in our case
due to the non-linearity in the learned dynamical model (which is a neural network)
and the cost function. There are some techniques that can solve the optimization
problem to get an approximate solution for finite horizon H. One of these methods is
simple shooting method [Rao09] that we will use to solve our optimization problem.
At the beginning, we will generate N imaginary trajectories,

τ jt = (sjt , a
j
t , ..., s

j
t+H−1, a

j
t+H−1, s

j
t+H) (2.6)

where for j (0 ≤ j ≤ N), initial state sjt = st, actions are randomly sampled from
aj ∼ πRAND and next states are predicted by using the learned dynamical model
sjt+1 = f̂θ(s

j
t , a

j
t). Using our cost function C(τ), we will evaluate all the imaginary

action sequences by calculating the cost for each, and the action sequence with the
least cost value will be chosen,

j∗ = arg min
j

C(τ j) (2.7)

Because our learned dynamical model is not accurate enough, we address this prob-
lem of mismatching by using model predictive control (MPC): the MPC controller
πMPC executes only the first action aj

∗

t from the resulting trajectory directly on
the environment, receives the actual next state st+1 from the environment and re-
optimizes for the action sequence at the next time step. This interaction with the
environment will construct actual trajectory τ that have been executed for T time
steps. Simple random shooting method is very sufficient in case we have finite
horizon, but for longer horizon and higher dimensional action space, we need other
powerful method, e.g. ILQR [LT04].

2.2.1.5 Improving Model-Based Control with Reinforcement Learning

To improve the performance of our model-based algorithm which is especially af-
fected by the accuracy of our learned dynamical model, we need to train the dynam-
ical model on more data. We make use of the data collected after interacting with

16 CHAPTER 2. METHODOLOGY

the environment using the MPC controller πMPC . We increase the on-policy data
by alternating between gathering data, DRL, by interacting with the environment
and retraining the dynamical model with the aggregated data.

To summarize the full algorithm, we collect random trajectories, and added to
dataset DRAND, by using random policy πRAND by which the dynamical model
will be trained with initially. After that MPC controller πMPC will be used to inter-
act with the environment to collect some on-policy trajectories which form dataset
DRL.Then we combine it with dataset DRAND to retrain our dynamical model with
D = DRAND ∪ DRL. The algorithm continues alternating between retraining the
dynamical model and gathering new data until we reach to the predefined maxi-
mum number of iterations. The pseudo code in Alg. 1 and the flow chart in Fig.2.3
describe the model-based deep reinforcement learning algorithm.

Algorithm 1 Model-Based Deep Reinforcement Learning

1: gather dataset DRAND by using πRAND
2: initialize empty dataset DRL, and randomly initialize f̂θ
3: for iter = 1 to maxiter do
4: train f̂θ(s, a) by performing gradient descent on Eqn. 2.4
5: using DRAND and DRL . using DRAND only at iter = 1
6: for ep = 1 to Nep do . Nep episodes per iteration
7: for t = 1 to T do . T time steps per episode
8: get agent’s current state st
9: use f̂θ to generate N imaginary trajectories of H horizon (Eqn. 2.6)
10: use C(τ) to get τ with least cost (Eqn. 2.7)
11: execute the first action at from the selected trajectory τ
12: end for
13: add (st, at,∆t) to DRL for T time steps
14: end for
15: end for

At the end of this stage, we have a general learned dynamical model f̂θ∗(st, at)
that can be used for performing many tasks. We extract an MPC controller πMPC

that can perform a specific task with the help of the learned dynamical model
and cost function C(τ) that can be designed according to the task description.
As we mentioned before, the model-based methods can achieve sample efficiency
but still the asymptotic performance is low. We need to make use of the model-free
algorithms for achieving the high asymptotic performance. Imitation process, that is
explained in the next section in detail, links between the two algorithms by copying
the behaviour of the model-based controller and using it for the initialization of
model-free policy.

2.2. HYBRID CONSTRAINED MPC REINFORCEMENT LEARNING ALGORITHM 17

πrand

Environment

akt skt+1

D

Normalization
DRAND

f̂θ(s, a)

πMPC

(st, at)i

sit+1

Environment

aj
∗

t

st

CostFunction
j∗ = arg min

j
C(τ j)

τj∗

DRL

Figure 2.3: Model-based deep reinforcement learning flow chart.

2.2.2 Imitation process

In this stage, we train a policy πφ(a|s) , represented by a neural network and param-
terized by φ, to mimic the behaviour of expert policy which is the model-based
controller in our case. We have as inputs, from the last model-based stage, the
final learned dynamical model f̂θ∗(st, at) and the MPC controller πMPC . To train
the imitation policy πφ(a|s), we need dataset that is collected and labeled by the
expert controller. Our agent will interact with the environment again by using the
model-based controller, following the model-based algorithm in Alg. 1, to collect N∗

trajectories with which we construct a dataset, by extracting the states st and the
true actions by the expert at from the trajectories to form the dataset D∗. The
policy parameters φ will be trained by optimizing behaviour cloning objective

min
φ

1

2

∑
(st,at)∈D∗

‖at − πφ(at | st)‖2
2 , (2.8)

using stochastic gradient descent which is Adam optimizer in our case. Representa-
tion for the imitation process is shown in Fig. 2.4.

At the end of this stage, we have as a result the final parameters φ∗ of the imitation
policy which mimic the performance of the model-based controller. We will use the
final parameters φ∗ and the final learned dynamical model as input for our next
stage. We will initialize the model-free policy with the final parameters φ∗.

18 CHAPTER 2. METHODOLOGY

πMPC

f̂θ∗(s, a)

Environment

Generate
(N∗) rollouts D∗

(s, a)

Loss Func. with Adam Opt.
minφ

1
2

∑
(st,at)∈D∗ ‖at − πφ(at | st)‖2

2

πφ âφ
′

πTRPO

φ∗

Figure 2.4: Imitation process flow chart.

2.2.3 Hybrid Constrained MPC

Our main contribution is discussed in this section. In this stage, we will have the
second phase of learning the task but in a constrained form. We will make use of
having a learned dynamical model that predict the next state and the parameters φ∗

that mimic the behaviour of the model-based controller after the imitation process
for safe complete learning process. We use the parameters φ∗ as initial values for the
model-free policy parameters and that is explained in Sec. 2.2.3.1, interacting with
the constrained environment with safe trajectories introduced by MPC controller
that samples actions from the model-free policy in Sec. 2.2.3.2, extensions introduced
to solve some problems in Sec. 2.2.3.3.

2.2.3.1 Initialization of The Model-Free Learner

In this stage, we use trust region policy optimization TRPO as a back-end model-free
algorithm to train our policy. TRPO is the state of the art reinforcement learning
algorithm that achieves a monotonic improvement for the policy and does not need
to initialize any critic or value function. To achieve this monotonic improvement,
they limit the policy improvement within a trust region by constraining the update
step by a predefined value δTRPO. Our algorithm can also be combined with any
other model-free algorithm. The model-free policy πTRPO,φ is parameterized as a
conditionally Gaussian policy,

πTRPO,φ ∼ N (µφ(s),Σ) (2.9)

where the mean µφ(s) is a deep neural network that is parameterized by the final

2.2. HYBRID CONSTRAINED MPC REINFORCEMENT LEARNING ALGORITHM 19

Algorithm 2 Hybrid Constrained MPC Algorithm

1: initialize πTRPO and πprimary with φ∗

2: set values for the hyperparameters Σ, δ, ρ and failure cost
3: for iter = 1 to maxiter do
4: for ep = 1 to Nep do
5: for t = 1 to T do
6: get agent’s current state st
7: generate imaginary trajectory set T for H horizon using f̂θ∗(s, a)
8: use G(τ) to filter T to get Tsafe
9: if <Tsafe is empty> then
10: for c to Nr do . Resampling loop
11: generate new T and filter to get Tsafe
12: if <Tsafe is not empty> then
13: Failure = False
14: Break
15: else
16: Failure = True
17: end if
18: end for
19: if Failure then
20: Reset the environment and add failure cost to the episode’s

reward function r(s, a)
21: Break
22: end if
23: end if
24: end for
25: add episode data to D
26: end for
27: train policy πTRPO with D (Eqn. 2.14)
28: decrease the value of ρ . ρ decrease by constant predefined value
29: end for

20 CHAPTER 2. METHODOLOGY

parameter φ∗ and co-variance Σ will be selected manually by choosing the standard
deviation.

One important step for our algorithm is to choose an appropriate standard devia-
tion. The parameters φ∗ describe a conservative policy (Conservative policy means
that the policy is directed to one of the local minmus, in our case the model-based
performance) that performs the task according to the model-based controller be-
haviour. This conservative police can be completely unsafe which means we need
to decrease the conservativeness of the policy and increase the possibility of having
safe different actions sampled from the model-free policy that form complete safe
sequence of actions to achieve the task. We can solve that by choosing appropriate
value for the standard deviation. Another reason for choosing appropriate value for
the standard deviation, is to increase the exploration rate to find higher performance
(in terms of the average return) than the model-based one. Standard deviation is
considered as a hyberparameter that you need to tune. Low standard deviation
leads to conservative policy. On the other hand, high standard deviation diverts the
policy from imitation policy performance or from even performing the task.

2.2.3.2 Safe Interaction with Hybrid Learning

The agent interacts with the constrained environment. This means that the state
and action-spaces are tight. The agent uses the MPC-like controller that has two
main properties of the normal MPC form the control theory, which are the idea of
receding horizon using the dynamical model, we use this for violation checking, and
the concept of applying the first action component in optimized action sequence.
As we mentioned before in the model-based stage, it is difficult to optimize for a
sequence of actions with a non-liner dynamical model and constraint function. This
is the reason we generate number of trajectories with actions sampled from the
model-free policy a ∼ πTRPO,φ, instead of random actions to make use of the model-
free algorithms to achieve high asymptotic performance, rather than optimize for
the sequence of actions.

The agent receives state st from the environment. We generate K imaginary trajec-
tories with H prediction horizon,

τ
(H)
t = (st, at, ..., ŝt+H−1, at+H−1, ŝt+H) (2.10)

where at ∼ πTRPO,φ(. | st) and ŝt+1 = f̂θ∗(ŝt, at). We can include all the trajectories
in one set T ,

T =
{
τ

(H)
i | i = 0, ..., K, H > 0

}
(2.11)

We filter the trajectory set T from the unsafe trajectories by using constraint func-

2.2. HYBRID CONSTRAINED MPC REINFORCEMENT LEARNING ALGORITHM 21

π
p
r
im
a
r
y

π
T
R
P
O

P
ol

ic
y

S
am

pl
er

T
ra

je
ct

or
y

G
en

er
at

or

π

T
ra

je
ct

or
y

F
ilt

er
T

T
ra

je
ct

or
y

S
am

pl
er

T
sa
f
e

E
nv

ir
on

m
en

t
a
τ
∗
,t

C
on

st
ra

in
t

F
un

ct
io

n
G

(τ
)

D

(s
t,
a
t,
r t

)

T
R

P
O

φ
n
ew

s t
+

1

R
es

am
pl

e

ρ
δ

δ T
R
P
O

F
ig

u
re

2.
5:

H
y
b
ri

d
co

n
st

ra
in

ed
M

P
C

al
go

ri
th

m
fl
ow

ch
ar

t.

22 CHAPTER 2. METHODOLOGY

tion,

G(τi) =
t+H−1∑
t′=t+1

g(st′) : (2.12)

g(st′) =

{
0, No violation
1, V iolation

After filtration, we have a safe set of trajectories which is a sub-set of the initial set
Tsafe ⊂ T ,

Tsafe =
{
τ

(H)
j | j = 0, ...,m, m ≤ K, G(τj) = 0

}
(2.13)

We have a safe set of trajectories that we can sample a trajectory from it to interact
with the environment. In the model-based stage, we evaluate the trajectories by cost
function C(τ) as in Eqn. 2.7. However, we randomly sample a trajectory τ ∗ from
Tsafe to allow exploration from the current policy to reach a performance better than
the model-based one. We will not apply the full trajectory on the environment, but
according to the MPC controller we are using, we apply only the first action aτ∗,t
to address the problem of model mismatch which it is critical in the constrained
environment. After T time steps, we have a complete closed-loop trajectory τc that
is evaluated by reward function r(s, a) for performing the task.

After interacting with the environment for Nep episodes, we train the policy using the
model-free algorithm (TRPO in our case) by the data collected from the interaction.
We update the parameters φ for the current policy πk by,

πk+1 = arg max
π∈Πφ

Eτc

∞∑
t=0

γtr(st, at) (2.14)

s.t. G(τc) = 0, D̄KL(π || πk) ≤ δTRPO

where k is the iteration count, D̄KL(π || πk) = Es∼πk [DKL(π || πk) [s]], and δTRPO >
0 is the step size for the policy update. The set

{
πφ ∈ Πφ : D̄KL(π || πk) ≤ δTRPO

}
is the trust region. Then we use φnew of the πk+1 for the interaction with the
environment of the next iteration. There are some practical issues that we can
handle to reach to the desired performance. In the next section, we propose solutions
for this problems which help for achieving our target.

2.2.3.3 Extended HCMPC

Learning from Failure: The ideal case of this algorithm to find safe trajectory
each time step, but this is not always the case. There will be some time steps where

2.2. HYBRID CONSTRAINED MPC REINFORCEMENT LEARNING ALGORITHM 23

the agent is stuck in a state with empty safe trajectory set Tsafe. We call this episode
a failed one. The important question in this case, how can we punish the agent for
these failed episodes to learn that it is not a good idea to take the same path. The
we use the concept of learning from failure. Example for learning from failure that
we can find around us, the child who is trying to hold a hot cup of tea, when he hold
it in a wrong way, it hurts, then he will not do this again as he got the appropriate
punishment that will make him stay away.

we use the same concept to solve our problem. Let’s assume that our agent is stuck
at time step tfailure in a state sfailure, then we resample again to find a safe trajectory.
We do this resampling process for Nr iterations. If we got a safe trajectory, then we
will use it to move to the next step. If we did not find one, we will terminate this
episode by resetting the agent to an initial position and add a failure cost to the
reward function for this episode at this time step tfailure. This ensures that there
will be no violation for any time step and the policy’s actions will divert the agent
from this failed states. We will see the effect of the learning from failure concept by
showing results in Ch. 3.

Model Mismatch: Although the learned dynamical model f̂θ∗(s, a) is sufficient
for the agent to perform well in the model-based stage where the agent interacts
with unconstrained environment, the model mismatch is critical when we deal with
constrained environment especially a high dimensional one. We need to increase the
the safety probability by decreasing the model mismatch. We solved this problem
by introducing boundary layer δ that can be added to the constraints and agent di-
mensions as shown in the representation in Fig. 2.6. This increases the gap between
the agent and the constraints which compensates the error from predicting the next
state by the dynamical model. The boundary layer δ is added to the calculation in
the constraint function G(τ) to determine the violation in the next states. Choosing
the value of the boundary layer δ is critical which is considered as a new hyperpa-
rameter we need to tune. We need to find a value that balances the trade-off of
having low value that may not solve the problem and cause violation as the model
mismatch is relatively high , or a high value that make the state space tighter, so
eliminate some possible local minima. We show the effect of the boundary layer in
the results in Ch. 3.

Inconsistency in the final performance: In reinforcement learning, the perfor-
mance is not always the same, even if we train the agent with the same environment
and the same parameters. The final performance differs approximately within small
range. The reasons for that are the random initialization for the parameters and the
stochasticity of the policy. Each training trial, we are sampling from a stochastic
policy to explore the possible combination to find the optimal actions and that may
lead to different final converged performance.

24 CHAPTER 2. METHODOLOGY

Figure 2.6: Boundary layer representation

In our algorithm, we noticed that such a difference in the performance each trial.
The reason for that the random sampling from the safe trajectory set Tsafe which will
lead to different possible direction for convergence of the policy. The conservative
policy increases the problem as the convergence of this policy will be faster than
policy with random parameters. This means that the exploration of the possible
action combinations, that can be sampled from the policy, will be small.

We solve this problem by adjusting the step size δTRPO within the policy update
process. Then the leaning rate becomes slower and this helps for the policy to have
sufficient number of iterations to find the same performance each trial.

We also increase the exploration rate. We explore from the initial model-free policy
we started the final stage with and exploit from the current policy. We call this
policy, the primary policy πprimary. We sample each time from πprimary by some
probability of exploration ρ. Decrementing the exploration probability ρ by some
constant value each training iteration. ρ is considered as a hyperparameter that we
need to tune to balance the trade-off of exploration and exploitation.

To summarize, our algorithm trains the agent for learning the task in constrained
environment with a main target of satisfying the safety conditions. We balance
the trade-off of achieving sample efficiency and high asymptotic performance by
combining model-based and model-free algorithm in our method. We have a general
learned dynamical model that we can use to learn any other task just by designing
the cost function. Our contribution is presented in the last stage by introducing
the constraints on the learning process. For a better explanation for the last stage,
we show the main steps in Alg. 2 and Fig. 2.5. We will show the validity of our
algorithm in Ch. 3 on a two degree of freedom robotic arm using mujoco physics
engine [TT12].

25

Chapter 3

Results

In this chapter, we will show the strength of our algorithm for solving the problem
of handling constraints within the reinforcement learning framework. In addition,
the ability to balance between achieving sample efficiency and high asymptotic per-
formance. At the beginning, in Sec. 3.1, we describe the environment on which
we apply our algorithm. Then, in Sec. 3.2, we evaluate the model-based stage. In
Sec. 3.3, we evaluate the design decisions for our main contribution (HCMPC stage).
Each result is a 10 trials experiment which is represented as a mean solid curve with
standard deviation region for showing the variance between the different trails.

3.1 Environment

We evaluate our algorithm on agent in MuJoCo [TT12]. The agent we use is the
reacher environment (S ∈ R18,A ∈ R2) which is a continuous control benchmark
task. At this environment, 2 DOF planar robotic arm tries to reach a sphere goal
in the state space while avoiding a constraints. The constraint is a sphere obstacle
as shown in Fig. 3.1.

3.2 Evaluating the Model-Based Stage

The number of iteration, for the model-based algorithm, is depend on the type
of the task and the complexity of the environment. For our task, our dynamical
model is just trained by the random dataset DRAND, even the performance of the
MPC controller is saturated after one iteration. However, We applied the model-
based stage on more than one environment and we show the performance in the
Appendix.

26 CHAPTER 3. RESULTS

Figure 3.1: This figure represents a 2 DOF planar robotic arm with a green sphere
goal and red sphere obstacle.

3.3 Evaluating Design Decisions for HCMPC

We show in this section the effect of each of the main hyperparameters in our algo-
rithm. We study the effect of standard deviation initialization in Sec. 3.3.1 for the
model-free policy (πTRPO), the advantage of the boundary layer δ to solve the model
mismatch problem in Sec. 3.3.2, the trade-off between the standard deviation value
and the boundary layer in Sec. 3.3.3, learning from failure effect in Sec. 3.3.4, TRPO
step size for solving the inconsistency in the performance in Sec. 3.3.5. Finally, we
compare our approach, in Sec. 3.3.6, with state of the art TRPO algorithm with
violation cost within the reward function.

3.3.1 Standard Deviation Effect

Standard deviation is a critical hyperparameter in our algorithm. Standard devia-
tion affect the performance in terms of convergence and response. The parameters
φ∗ of the imitation policy that are used for the initialization of model-free policy
πTRPO represent the performance reached by the model-based controller. This means
that either this performance is low comparing to the desired performance or unsafe
which may not coverage to any safe performance. This is the reason why we need to
choose manually the standard deviation to allow exploration to find high and safe
asymptotic performance.

We show in Fig. 3.2 the performance of different value of the standard deviation

3.3. EVALUATING DESIGN DECISIONS FOR HCMPC 27

on the reacher benchmark. From the results, we can see that for low standard
deviation (std=0.5), we are approaching a conservative policy which it may converge
to low asymptotic performance for some trials, or for others, it may not find safe
performance. This causes increase in the variance in the result. For very high
standard deviation (std=3.0), we are approaching a random policy which Loses
what it learned in the model-based stage. This leads to a slow response which
means sample complexity problem. Intermediate values for the standard deviation
(std=1.3 or std=1.7) lead to high and safe asymptotic performance.

Figure 3.2: The performance of our algorithm with different standard deviation
values where the boundary layer δ is 0.003 and TRPO step size δTRPO is 0.001.

3.3.2 Boundary Layer Effect

Boundary layer, δ, is another key hyperparameter to be adjusted to satisfy the
safety requirements. As we discussed in Sec. 2.2.3.3, the boundary layer δ is used
to tackle the model mismatch problem. We show in the result below in Fig. 3.4
the comparison between the violation cost with and without the boundary layer.
As we see the boundary layer δ succeeded to achieve zero violation cost. On the
other hand, without using the boundary layer, there are violations through out the
learning process. For the performance, we can see in Fig. 3.3 that by using boundary
layer, the performance becomes slightly low. This is an important point we need
to discuss. After using the boundary layer, the state space becomes tight. This
is why, we need to choose appropriate value for δ that keeps zero violation for the

28 CHAPTER 3. RESULTS

constraints and still with high performance. We show also in Fig. 3.5d the boundary
violation cost which means how many times we violate the boundary layer region.

Figure 3.3: Boundary layer effect on the average return with std is 1.3.

3.3.3 Standard Deviation Vs. Boundary Layer

In this section, we show the effect of the standard deviation over the violation
cost. We have two types of violations, actual violation and boundary violation (the
violation happens over the safe boundary layer around the constraint). As we see in
Fig. 3.5, the violation cost with constant boundary layer δ value and different values
for the standard deviation. As we increase the standard deviation the actions taken
by the policy are unexpected by the learned model, so the mismatch increases. This
is the reason for the increased the violation cost in the results for standard deviation
1.7 and 3.0. On the other side, as the standard deviation decreases, we approach
a policy that is similar to the model-based controller, the model can predict well
the next state as the data that the model is trained with coming mainly from the
model-based controller.

As we adjust the value of the boundary layer δ to show that we can satisfy the safety
requirements for different possible values of the standard deviation. We show those
results in Fig. 3.6. For our experiment, we can add a very small value for boundary
layer for standard deviation 1.3 to get the preferred performance. Then, for high

3.3. EVALUATING DESIGN DECISIONS FOR HCMPC 29

Figure 3.4: Boundary layer effect on the actual violation cost with std is 1.3.

standard deviation values, these are extreme cases that lead in most of the case to
slow response performance and that is not what we want to achieve.

3.3.4 Learning from Failure with Violation Cost

Introduce the learning from failure concept within the learning process is considered
as very important step in our proposed approach. We add failure cost to the reward
function at each failed episode. This failure cost is dynamic according to the time
step at which the failure happens. The reward function for our environment is
described in details in the Appendix. We measure the validity of these step by
calculation a success rate which is the ratio between the successful episodes to the
total number of episodes. In Fig. 3.7, we list all the results for different standard
deviation that represent this success rate. As we see all the success ratio approaching
1.0 except standard deviation 0.5 that show a high variance in the ratio as in the
average return performance (Fig. 3.2). This is due to the conservativeness of the
policy which has a probability of reaching unsafe final performance for some trials.

3.3.5 TRPO Step Size Effect

One of the problems we faced as mentioned in Sec. 2.2.3.3 is the inconsistency in the
results. We tackle this issue by tuning the value of the step size for the policy update

30 CHAPTER 3. RESULTS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: (a, c, e, g) show the boundary layer effect of value 0.003 over the actual
violation for different standard deviation values, while (b, d, f, h) show the boundary
layer violation for different standard deviation values too.

3.3. EVALUATING DESIGN DECISIONS FOR HCMPC 31

(a) (b)

(c) (d)

Figure 3.6: (a,b) show the actual and the boundary violation costs after increasing
the boundary layer value from 0.003 to 0.006, while (c, d) show the actual and the
boundary violation costs after increasing the boundary layer from 0.003 to 0.015.

32 CHAPTER 3. RESULTS

(a) (b)

(c) (d)

Figure 3.7: These plots show the effect of the learning from failure concept on
different standard deviation values.

3.3. EVALUATING DESIGN DECISIONS FOR HCMPC 33

in the TRPO algorithm. This helps to slow down the convergence of the policy for
the purpose of exploration and find consistent performance each trial of learning.
The performance is affected by tuning the step size by decreasing the value from
0.05 to 0.01 as shown in Fig. 3.8. The results for step size 0.05 have high variance
which means different possible final performance for each trial. On the other hand,
the variance decreases with the decrease of the step size value to 0.01.

Figure 3.8: Boundary layer effect on the average return with std is 1.3.

3.3.6 Comparison to State-of-the-Art Algorithms

In this section, we compare our results in terms of average return performance and
constraint violation cost with the state of the art model-free algorithm TRPO with
different values for the violation cost added to the reward function. Due to the
hierarchy of our algorithm in terms of using model-based and model-free algorithms
in one pipeline, we achieve sample efficiency. As we see in Fig. 3.9, the response
of our algorithm is faster than the response of TRPO for different violation cost
values. We can see that TRPO with violation cost 20 is also faster than that with
violation cost 100. In addition, our asymptotic performance is high comparing to
the performance of TRPO (even the reward function is not the same but at the end
all the performances become mostly safe, then we can compare them). From the
violation point of view, our algorithm satisfy the constraint condition within the
learning phase of the last stage. On the other hand, TRPO violates many times
until it learns how to avoid the constraint. We show this results in Fig. 3.10.

34 CHAPTER 3. RESULTS

Figure 3.9: Comparison in terms of the average return performance for our HCMPC
stage and TRPO with different violation costs.

Figure 3.10: Comparison in terms of the actual violation cost for our HCMPC stage
and TRPO with different violation costs.

35

Chapter 4

Conclusion

In this work, we construct a hybrid reinforcement learning algorithm that is capable
of satisfy constraint conditions within each step of learning. This is achieved by
using the concept of receding horizon, from MPC theory, for violation checking over
a finite horizon. In addition, the hybrid structure balances the well-known trade off
in reinforcement learning between achieving sample efficiency and high asymptotic
performance. In the result of using a model-based stage for learning the dynamical
model, we decrease the necessary samples for the learning process comparing to the
model-free algorithms after using the dynamical model with MPC-Like controller as
a initial good performance for the model-free algorithm. Thus, we make use of the
model-free algorithm for achieving the high asymptotic performance.

We evaluate our algorithm performance on a constrained reacher environment. A
planar robot learn reachability task with constraint condition satisfaction with high
final performance for the task. Our approach outperforms against state of the art
model-free algorithm (TRPO) with violation cost added to the reward function. Our
algorithm highly perform in terms of constraint handling, number of samples and
the asymptotic performance.

Our work handle the mismatch issue in the dynamical model by introducing a safe
boundary layer, but to increase the probability of constraints satisfaction for high
dimensional environments, we need more effective way. Still, our work is subject to
some limitations in its current implementation. While we showed our constraints
satisfaction, but it needs more formal proof for the constraints handling.

4.1 Future Work

To extend our approach for more complex environments and with high guarantee for
constraints satisfaction, we need to include optimization layer for generating such

36 CHAPTER 4. CONCLUSION

safe trajectories. For the model mismatch problem, we can make use of the idea of
model ensembles in [KCD+18]. In this work, the dynamics is approximated by using
multiple neural network with different initialization, so it can handle the mismatch
problem effectively. In addition, our aim is to apply our algorithm for locomotion
tasks and even on real systems to validate our approach. Finally, we can increase the
complexity of the constraints by handling dynamic constraints or more challenging
constraint like human.

37

Appendix A

A.1 Experimental Details for HCMPC

We validate our approach on the reacher environment with different values of the
hyperparameters. The reward function for our environment, consists of three main
components as shown,

r(s, a) = −ddist + dprox − dfailure

where ddist is the distance between the end effector of the robot and the goal, dprox
is a bonus added when the end effector of the robot within some region around the
goal and dfailure is the failure cost for the failed episodes which can be described by,

dfailure = nremaining ∗ ddist

where the nremaining is the remaining time steps for the episode.

A.2 Model-Based Results on different tasks

In this section we can see the performance of the model-based stage on two different
environments (Half cheetah and cart-pole). We show the results below,

38 APPENDIX A.

Figure A.1: Model-based stage performance on cart-pole environment

Figure A.2: Model-based stage performance on half-cheetah environment

LIST OF FIGURES 39

List of Figures

2.1 Flow chart for reinforcement learning interaction 10
2.2 Flow chart for hybrid constrained MPC pipeline. 13
2.3 Model-based deep reinforcement learning flow chart. 17
2.4 Imitation process flow chart. 18
2.5 Hybrid constrained MPC algorithm flow chart. 21
2.6 Boundary layer representation . 24

3.1 This figure represents a 2 DOF planar robotic arm with a green sphere
goal and red sphere obstacle. 26

3.2 The performance of our algorithm with different standard deviation
values where the boundary layer δ is 0.003 and TRPO step size δTRPO
is 0.001. 27

3.3 Boundary layer effect on the average return with std is 1.3. 28
3.4 Boundary layer effect on the actual violation cost with std is 1.3. . . . 29
3.5 (a, c, e, g) show the boundary layer effect of value 0.003 over the

actual violation for different standard deviation values, while (b, d, f,
h) show the boundary layer violation for different standard deviation
values too. 30

3.6 (a,b) show the actual and the boundary violation costs after increas-
ing the boundary layer value from 0.003 to 0.006, while (c, d) show the
actual and the boundary violation costs after increasing the boundary
layer from 0.003 to 0.015. 31

3.7 These plots show the effect of the learning from failure concept on
different standard deviation values. 32

3.8 Boundary layer effect on the average return with std is 1.3. 33
3.9 Comparison in terms of the average return performance for our HCMPC

stage and TRPO with different violation costs. 34
3.10 Comparison in terms of the actual violation cost for our HCMPC

stage and TRPO with different violation costs. 34

A.1 Model-based stage performance on cart-pole environment 38
A.2 Model-based stage performance on half-cheetah environment 38

40 LIST OF FIGURES

BIBLIOGRAPHY 41

Bibliography

[AE15] Haitham Tutunov Rasul Ammar, B. and E. Eaton. Safe policy search
for lifelong reinforcement learning with sublinear regret. International
Conference on Machine Learning, 2015.

[AHTA17] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy
optimization. the 34st International Conference on Machine Learn-
ing,Sydney,Australia, 37:1–10, 2017. URL: https://arxiv.org/pdf/

1705.10528.pdf.

[AK17] B. Amos and J.Z. Kolter. optnet: Differentiable optimization as a layer
in neural networks. In Proceeding International Conference of Machine
Learning, 2017.

[Alt99] E. Altman. Constrained Markov Decision Processes. Chapman and Hall,
1999.

[DR11] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and
data-efficient approach to policy search. In Proceedings of the 28th In-
ternational Conference on machine learning (ICML-11), pages 465–472,
2011. URL: http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf.

[FA16] Levine S. Fu, J. and P. Abbeel. One-shot learning of manipulation skills
with online dynamics adaptation and neural network priors. In Intelli-
gent Robots and Systems (IROS), 2016 IEEE/RSJ International Con-
ference, pages 4019–4026, 2016. URL: https://ieeexplore.ieee.org/
document/7759592/?part=1.

[FT17] Akametalu A.K. Zeilinger M.N. Kaynama S. Gillula J. Fisac, J.F. and
C.J. Tomlin. A general safety framework for learning-based control in
uncertain robotic systems. IEEE Transactions on Automatic Control,
2017.

[GF15] J. Garcia and F. Fernande. A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, pages 1437–1480, 2015.

https://arxiv.org/pdf/1705.10528.pdf
https://arxiv.org/pdf/1705.10528.pdf
http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
https://ieeexplore.ieee.org/document/7759592/?part=1
https://ieeexplore.ieee.org/document/7759592/?part=1

42 BIBLIOGRAPHY

[HT00] Wayne G. Silver D. Lillicrap T. Erez T. Heess, N. and Y. Tassa. Learning
continuous control policies by stochastic value gradients. In Advances in
Neural Information Processing Systems, pages 2944–2952, 2000.

[KB14] D. Kingma and J. Ba. Adam: A method for stochastic optimiza-
tion. arXiv:1412.6980, 2014. URL: https://arxiv.org/pdf/1412.

6980.pdf.

[KCD+18] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel. Model-
ensemble trust-region policy optimization. International conference on
learning representation, pages 1–15, 2018. URL: https://openreview.
net/pdf?id=SJJinbWRZ.

[KH17] M. Kimmel and S. Hirche. Invariance control for safe human-robot in-
teraction in dynamic environments. IEEE Transactions on Robotics,
33:1327 – 1342, 2017. URL: https://mediatum.ub.tum.de/doc/

1346232/523152.pdf.

[KK18] Berkenkamp F. Turchetta M. Koller, T. and A. Krause. Learning-based
model predictive control for safe exploration and reinforcement learning.
2018.

[LA6a] Finn C. Darrell T. Levine, S. and P. Abbeel. End-to-end training of
deep visuomotor policies. Journal of Machine Learning Research, 17:1–
40, 2016a.

[LK17] Jang Y. Poupart P. Lee, J. and K. Kim. Constrained bayesian reinforce-
ment learning via approximate linear programming. Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence
(IJCAI-17), 2017.

[LT04] W. Li and E. Todorov. Iterative linear quadratic regulator design for
nonlinear biological movement systems. In Proceedings of 1st Interna-
tional Conference on Informatics in Control, Automation and Robotics,
pages 222–229, 2004.

[LW15] Hunt J.J. Pritzel A. Heess N. Erez T. Tassa Y. Silver D. Lillicrap, T.P.
and D. Wierstra. Continuous control with deep reinforcement learning.
CoRR, 2015.

[MK16] Badia A.P. Mirza M. Graves A. Harley T. Lillicrap T.P. Silver D. Mnih,
V. and K. Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. pages 1–28, 2016. URL: http://arxiv.org/abs/1602.01783.

[MO15] Kavukcuoglu K. Silver D. Rusu A.A. Veness J. Bellemare M.G. Graves
A. Riedmiller M. Fidjeland A.K. Mnih, V. and G. Ostrovski. Human-
level control through deep reinforcement learning. Nature, 518:529–533,
2015.

https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://openreview.net/pdf?id=SJJinbWRZ
https://openreview.net/pdf?id=SJJinbWRZ
https://mediatum.ub.tum.de/doc/1346232/523152.pdf
https://mediatum.ub.tum.de/doc/1346232/523152.pdf
http://arxiv.org/abs/1602.01783

BIBLIOGRAPHY 43

[MS00] Rawlings J.P. Rao C.V. Mayne, D.Q. and P.O.M. Scokaert. Constrained
model predictive control: Stability and optimality. Automatica, 36:789–
814, 2000.

[NKFL17] A. Nagabandi, G. Kahn, R. Fearing, and S. Levine. Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning. Conference on Neural Information Processing Systems, 37:1–
8, 2017. URL: https://arxiv.org/pdf/1708.02596.pdf.

[OS15] Guo X. Lee H. Lewis R.L. Oh, J. and S. Singh. Action-conditional video
prediction using deep networks in atari games. In Advances in Neural
Information Processing Systems, pages 2863–2871, 2015.

[PT17] Magistris G.D. Pham, T.H. and R. Tachibana. Optlayer - practical con-
strained optimization for deep reinforcement learning in the real world.
arXiv preprint arXiv:1709.07643, 2017.

[Rao09] A. Rao. A survey of numerical methods for optimal control. in Advances
in the Astronautical Sciences, 2009. URL: http://www.anilvrao.com/
Publications/ConferencePublications/trajectorySurveyAAS.pdf.

[SA16] Moritz P. Levine S. Jordan M. Schulman, J. and P. Abbeel. High-
dimensional continuous control using generalized advantage estimation.
In International Conference on Learning Representations (ICLR2016),
2016.

[SB17] Schrittwieser J. Simonyan K. Antonoglou I. Huang A. Guez A. Hubert
T. Baker L. Lai M. Silver, D. and A. Bolton. Mastering the game of go
without human knowledge. Nature, 550:354–359, 2017.

[SLM+15] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel. Trust
region policy optimization. the 31st International Conference on Machine
Learning, 37:1–9, 2015. URL: https://arxiv.org/pdf/1502.05477.

pdf.

[SP16] Huang A. Maddison C.J. Guez A. Sifre L. Driessche G.V.D. Schrittwieser
J. Antonoglou I. Silver, D. and V. Panneershelvam. Mastering the game
of go with deep neural networks and tree search. Nature, 529:484–489,
2016.

[SY17] Abdou M. Perot E. Sallab, A.E. and S. Yogamani. Deep reinforcement
learning framework for autonomous driving. IST Electronic Imaging,
Autonomous Vehicles and Machines 2017, pages 70–76, 2017. URL:
https://arxiv.org/abs/1704.02532.

[TT12] Erez T. Todorov, E. and Y. Tassa. Mujoco: A physics engine for
model-based control. Intelligent Robots and Systems (IROS), 2012

https://arxiv.org/pdf/1708.02596.pdf
http://www.anilvrao.com/Publications/ConferencePublications/trajectorySurveyAAS.pdf
http://www.anilvrao.com/Publications/ConferencePublications/trajectorySurveyAAS.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/abs/1704.02532

44 BIBLIOGRAPHY

IEEE/RSJ International Conference, pages 5026–5033, 2012. URL:
https://ieeexplore.ieee.org/abstract/document/6386109/.

[UD07] E. Uchibe and K. Doya. Constrained reinforcement learning from in-
trinsic and extrinsic rewards. IEEE 6th International Conference on
Development and Learning, ICDL, pages 163–168, 2007.

https://ieeexplore.ieee.org/abstract/document/6386109/

LICENSE 45

License

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this license, visit http://creativecommons.org or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

http://creativecommons.org/licenses/by/3.0/de/

	Introduction
	Related Work

	Methodology
	Technical Background
	Deep Reinforcement Learning
	Model-Free Algorithms
	Model-Based and Optimal Control

	Hybrid Constrained MPC Reinforcement Learning Algorithm
	Model-Based Deep Reinforcement Learning
	Imitation process
	Hybrid Constrained MPC

	Results
	Environment
	Evaluating the Model-Based Stage
	Evaluating Design Decisions for HCMPC
	Standard Deviation Effect
	Boundary Layer Effect
	Standard Deviation Vs. Boundary Layer
	Learning from Failure with Violation Cost
	TRPO Step Size Effect
	Comparison to State-of-the-Art Algorithms

	Conclusion
	Future Work

	
	Experimental Details for HCMPC
	Model-Based Results on different tasks

	List of Figures
	Bibliography

